Morphological Analysis for Unsegmented Languages using Recurrent Neural Network Language Model

نویسندگان

  • Hajime Morita
  • Daisuke Kawahara
  • Sadao Kurohashi
چکیده

We present a new morphological analysis model that considers semantic plausibility of word sequences by using a recurrent neural network language model (RNNLM). In unsegmented languages, since language models are learned from automatically segmented texts and inevitably contain errors, it is not apparent that conventional language models contribute to morphological analysis. To solve this problem, we do not use language models based on raw word sequences but use a semantically generalized language model, RNNLM, in morphological analysis. In our experiments on two Japanese corpora, our proposed model significantly outperformed baseline models. This result indicates the effectiveness of RNNLM in morphological analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis

In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

Character-Aware Neural Language Models

We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art d...

متن کامل

A Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis

In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...

متن کامل

Arabic Diacritization with Recurrent Neural Networks

Arabic, Hebrew, and similar languages are typically written without diacritics, leading to ambiguity and posing a major challenge for core language processing tasks like speech recognition. Previous approaches to automatic diacritization employed a variety of machine learning techniques. However, they typically rely on existing tools like morphological analyzers and therefore cannot be easily e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015